
Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 7, Issue 8, August (2017)

ISSN: 2395-5317 ©EverScience Publications 1

Big Data Predictive Analytics with RevoScaleR

A Yugandhar Reddy

 Department of CSE, JNTU College of Engineering Anantapur, Anantapur-515-002, India.

A. Suresh Babu

Department of CSE, JNTU College of Engineering Anantapur, Anantapur-515-002, India.

Abstract – R is becoming the leading language in data science.

Because of thousands of packages to handle data science in an easy

programmable manner. When it comes to the larger data sets its

showing poor performance in high end servers also. This is only

because of its style of handling the data. In R entire data need to

hold in the memory for processing. Due to this memory bound of

R, original R is not suitable to handle larger data sets. This paper

addresses how the problem of R can overcome with RevoScaleR.

Index Terms – Big Data, RevoScaleR, Analytics.

1. INTRODUCTION

R is hot, R is rapidly becoming the leading language in

statistics and data science. Today, R is the tool of choice for

data science professionals in every industry and field. R

applications span the universe from the hard sciences such as

astronomy, chemistry and computational statistics and

genomics to practical applications in business, medicine drug

development, marketing, finance, health care, and all manner

of forecast analytics. Because R has thousands of packages

many of which are devoted to particular applications.

Mastering of R is not need to develop your own applications.

Memory-bound of the R is the main barrier to it .All data need

to be held in the memory to perform calculations. This

constraint becomes a problem when data is very large. Even for

modern computers with high configuration (like, 64-bit address

spaces and huge amounts of RAM) dealing with data sets that

are hundreds of millions of observation is a significant

challenge. The problem is not just simply being capable to

house the data in memory for examination but performance and

scalability are prime considerations

Revolution Analytics has addressed these challenges with its

Big Data to extend the reach of R into the kingdom of

production data analysis with very large data sets. This paper

address the Revolution Analytics new package named

RevoScaleR TM, which delivers extraordinary levels of

performance and capacity for statistical analysis in the R

environment. Now without deploying specialized or expensive

R users can model and visualize larger data sets.

2. LIMITATIONS OF IN-MEMORY DATA ANALYSIS

In the world of fatly increasing size of data, organizations are

discreet to deploy R beyond research due to this memory bound

limit. This drawback of R does not only impacts the ability of

data that can be processed, but also badly affects the

performance and scalability. For instance, allotting a data

frame as small as 5,000,000 observations and 3 variables will

throw an error like the following due to memory limitations.

Even though high-end servers can manage to held big data in

memory, the performance of original R on such big data files

will be expensively slow

>lm(ArrDelayUniqueCarrier+DayOfWeek, data=myData)

Error: cannot allocate vector of size 751.8 Mb

To overcome this limitation, efforts have been made in

improving R to scale for Big data. The best way to achieve it is

by implementing parallel external memory storage and parallel

processing mechanisms in R.

3. HOW REVOSCALER PROCESS DATA

3.1 Storing Data

One of the answers to being scalable is the capacity to handle

additional data than can fit into memory at same time. This

equates to being capable to work with chunks of data as an

alternative of requiring the whole dataset to be housed in

memory at same time. In the case of RevoScaleR, chunks are

defined as consecutive blocks of observations for a given

projection of variables.

Though RevoScaleR can process data from various sources, it

has its specific fully optimized file structure (theXDF format)

that is particularly right for chunking. Data in an XDF file can

be read rapidly by observations or by variables. In addition,

blocks of observations for selected variables can be read

consecutively, instead of randomly. Consecutive accesses can

be tens to thousands of times faster than random access. Also,

in an XDF file the time it takes to access a block of observations

for a variable is fundamentally independent of the total number

of variables and observations in the file. This means even in the

very files, only the data for the actual variables required for an

analysis needs to be accessed and processed, and this may only

be a few hundreds to few thousands megabytes. The time it

takes to do that is basically the same as if only that data were

stored in the file; storing the additional idle data does not add

to the processing time.

Data in an XDF file is held in the same binary format that is

employed in memory, so no conversion is needed when it is

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 7, Issue 8, August (2017)

ISSN: 2395-5317 ©EverScience Publications 2

brought into memory. In order to reduce wasted space, it can

also be held in a suitable -sized way. For example, a variable

that have no more than 256 values can be stored in a byte per

number. Floating point values with a precision of less than 6 or

7 decimal digits can be stored in 4 bytes per number.

New columns and new observations can be added to the file

without rewriting the whole file. Thus, the cost of creating new

variables and of adding more rows is greatly reduced.

3.2 Reading Data

When data is accessed in chunks, the feasible chunk size

depends on the variety of reasons, such as the speed of RAM,

the speed of the disk, speed of cores, the number of cores, and

the variety of calculations being done. RevoScaleR permits the

size of chunks to change depending upon circumstances. A

bottleneck for data handling is data I/O: accessing the data from

disk (external). RevoScaleR devotes one core to accessing the

data from disk. Meanwhile, the other cores are allocated to

processing the chunk of data read into memory from the last

access. If it is possible to hold all data into memory on once,

RevoScaleR permits that. It then assigns all available cores to

handle that data.

3.3 Handling Data in Memory

As on disk, usage of the appropriate-sized data type in memory

reduces the space needed and also the time taken to move the

data in memory. In other technologies, before adding a set of

integers and a set of double floating point numbers together,

the set of integers is first converted and copied into a set of

doubles. This it is time and space consuming. In RevoScaleR

avoid such conversions and coping of the data values regardless

of the type of the operation and size of the data until the data

values are really given to CPU.

3.4 Use of Multiple Cores on a Single Computer

Virtually all computations that encompass data in RevoScaleR

are spontaneously threaded that they use several cores on an

engine when they are available. This is done efficiently by

minimalizing the overhead of shifting the computations to

multiple threads, by minimizing the quantity of data that must

be copied, by doing as much work as possible on each thread

to remunerate the cost of initializing the computations, and by

minimizing inter-thread synchronization and communication.

Loading huge chunks of data to each of the multiple cores is

vital for efficiency. For analytic routines such as crosstabs,

logistic regression, descriptive statistics, K-means clustering

and linear regression (in which large number of variables are

naturally used) a huge chunk of observations perhaps billions

for all of the variables is read into memory by one core.

Concurrently, the data chunk from the previous read is virtually

split among the left behind cores for the required processing.

The code doing the processing on each core (thread) only

desires to know what its allocated task is, and no inter-thread

synchronization and communication is required.

4. EFFICIENT PARALLELIZATION OF STATISTICAL

AND BIG DATA PREDICTIVE ANALYTICS

RevoScaleR is built upon a platform designed to efficiently and

automatically external memory algorithms. These are the class

of algorithms that do not need all data to be in memory at same

time, and such algorithms are existing for a wide range of data

mining and statistical routines. The way in which these

algorithms are automatically parallelized is such that, in

general, the quickest algorithms per core are also the quickest

when parallelized. (This happy situation is not the case for

some other class of parallel algorithms). Since the load of

worrying about parallelization is detached from the engineers

applying these algorithms, they can concentrating on getting

feasible speed on each core. This encompasses several things.

Most obviously, it involves using fast algorithms, and carefully

coding those using C++ templates, which can produce very fast

code. Other issues are important as well. Categorical data is

very common in statistical computations, and they are dialed in

ways that save memory, upturn speed, and increase

computational exactness as well. It is often the case in

statistical models that the same values are required in different

parts of the computation. RevoScaleR has a erudite algorithm

for pre-analyzing models to detect such repetition, so that the

number of computations can be diminished. Multiple models

can be analyzed jointly. This algorithm can also detect

collinearities in models, which can lead to wasted

computations or even computational failures, and can remove

them prior to doing any computations.

5. USING REVOSCALER FOR BIG DATA

PREDICTION ANALYTICS

This section focuses on applying RevoScaleR package to big

data prediction analysis. This show how to read a data set in the

text format, how to convert text file to .xdf format, how to

construct big data decision tree, how to prune the decision tree,

how to predict the future and finally how to plot the graph.

5.1 Importing the dataset

Here is a sample RevoScaleR analysis that uses a subset of the

airline on-time data reported each month to the U.S.

Department of Transportation (DOT) and Bureau of

Transportation Statistics (BTS) by the 16 U.S. air carriers. This

data comprises three columns: one categorical variable,

DayOfWeek and two numeric variables, ArrDelay and

CRSDepTime. It is positioned in the SampleData directory of

the RevoScaleR package, so you can easily exucute this

example in your Revolution R Enterprise session

Import the example airline data from a csv to an .xdf file. When

we load the data, we transform the string variable to a

(categorical) factor variable by stringsAsFactors:

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 7, Issue 8, August (2017)

ISSN: 2395-5317 ©EverScience Publications 3

inFile<-file.path(rxGetOption("sampleDataDir"),

"AirlineDemoSmall.csv") rxTextToXdf(inFile = inFile,

outFile = "airline.xdf", stringsAsFactors = T, rowsPerRead =

200000)

There are a total of 600,000 observation in the dataset file.

Specifying the argument rowsPerRead lets us to read and write

the data in 3 blocks of 200,000 observations each.

View elementary data information. The rxGetInfoXdf function

lets you to quickly view some elementary information

regarding variables data set and the data set.

rxGetInfoXdf("airline.xdf", getVarInfo = TRUE, numRows =

20)

Function rxHistogram is used to show the distribution of flight

delay by the day of week.

5.2 Exploring the data

Use the rxHistogram function to show the distribution of flight

delay by the day of week.

 rxHistogram(ArrDelay|DayOfWeek, data = "airline.xdf")

Next, we calculate summary statistics to the arrival delay

variable

 rxSummary(ArrDelay, data = "airline.xdf")

5.3 rxDTree for prediction

Decision trees are effective algorithms widely used for

regression and classification. Classical algorithms for

constructing a decision tree sort all continuous variables to

decide where to divide the data. This sorting step becomes

memory and time prohibitive when handling with large data.

Numerous techniques have been projected to overcome the

sorting problem, which can be roughly classified into two

classes: using approximate summary statistics or performing

data pre-sorting of the data. While pre-sorting procedures

follow classical decision tree algorithms more closely, they

cannot house very huge data sets. These big data decision trees

are generally parallelized in numerous ways to allow large

scale learning: data parallelism splits the data either vertically

or horizontally so that different processors see different

variables or rows and task parallelism builds diverse tree nodes

on diverse processors.

The rxDTree algorithm is an estimated decision tree algorithm

with horizontal data parallelism specially designed for

handling very large data sets. It calculates histograms to create

empirical distribution functions of the data and constructs the

decision tree in a breadth-first fashion. The algorithm can be

run in parallel environments such as a distributed (grid or

cluster) environment or a multicore machine. Each core gets

only a part of the observations of the data, but has a view of the

whole tree built so far. It constructs a histogram from the

observations it sees, which basically compresses the data to a

static amount of memory. This estimated description of the data

is then sent to a master with constant little communication

complexity autonomous of the length of the data set. The

master integrates the information received from each of the

workers and spots which terminal tree nodes to split and how.

Since the histogram is built in parallel, it can be rapidly

constructed even for very large data sets.

With rxDTree , you can regulator the balance between

prediction accuracy and time complexity by setting the

maximum amount of bins for the histogram. The algorithm

constructs the histogram with roughly equal number of rows in

each bin and takes the limits of the bins as the candidate splits

for the terminal tree nodes. Since only a limited number of split

sites are inspected, it is probable that a suboptimal split point is

chosen causing the entire tree to be different from the one

constructed by a classical algorithm. However, it has been

exposed analytically that the error rate of the parallel tree

reaches the error rate of the serial tree, even if the trees are not

identical .You can set the number of bins in the histograms to

regulate the balance between speed and accuracy: a huge

number of bins allows a more precise description of the data

and thus more precise results, whereas a little number of bins

diminishes time complexity and memory usage. In the case of

integer forecasters for which the count of bins equals or

exceeds the number of unique observations, the rxDTree

algorithm produces the identical results as classical sorting

algorithms since the empirical distribution function precisely

represents the data set. To forecast the class label of the query

pattern we build a classifier called decision tree for training and

testing the classifier we need training set and testing set.

Genarally 70% observations of dataset are used to train the

classifier remaining records are used for testing. Following

code used to load and split the dataset in to training and test

sets.

inDataFile <- file.path("AirlineDemoSmall.csv")

rxImport(inDataFile,outFile="airline", overwrite = TRUE)

inDataFile <- file.path("airline.xdf")

split data set

rxSplit(inData = inDataFile, outFilesBase = paste0("airline"),

outFileSuffixes = c("Train", "Test"), splitByFactor = "s",

overwrite = TRUE, transforms = list(splitVar =

factor(sample(c("Train", "Test"), size = .rxNumRows, replace

= TRUE, prob = c(.80, .20)), levels = c("Train", "Test"))),

rngSeed = 17, consoleOutput = TRUE)

training and testing data sets

training <- file.path("airline.s.Train.xdf") testing <-

file.path("airline.s.Test.xdf")

For the given data set Late is a dependent variable.Setting the

complexity parameter (cp) to it’s default value results in the

very large number of splits. Specifying cp = 1e-5 produces a

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 7, Issue 8, August (2017)

ISSN: 2395-5317 ©EverScience Publications 4

more manageable set of splits in this model.Following code

builds the factors for the tree

rxFactors(inData=training,factorInfo =

list(defaultFctor=list(varName="default")),

outFile=training,overwrite = TRUE)

rxFactors(inData=testing,factorInfo =

list(defaultFctor=list(varName="default")),

outFile=testing,overwrite = TRUE)

Following code sets the parameters for the decision tree

control <- list(minsplit=20,cp=0.01,xval=2, maxdepth=5,

maxcompete=0,maxsurrogate=0, usesurrogate=2

,surrogatestye=0) treeC <- rxDTree(formula = Late

CRSDepTime + DayOfWeek

,data=training,control=control,maxNumBins = 15000)

Prediction and confusion matrix

rxPredict(treeC,data=testing,outData = testing, overwrite =

TRUE,predVarNames = "Pred_C",type="vector") conf.mat <-

rxCrossTabs(defaultFctor:Pred_CF, data=testing)

print(conf.mat) print(prop.table(conf.mat$counts[[1]]))

6. CONCLUSION

RevoScaleR is a library included in Revolution R Enterprise

that provides enormously fast statistical analysis on very very

large data sets, without needing specialized hardware. Using

only a commodity multi-processor computer with modest

amounts of RAM, data processing and predictive modeling

techniques can easily be performed on data sets with hundreds

of millions of rows and hundreds of variables, at speeds

suitable for interactive processing. Extending the system to a

small cluster of similar computers commensurately reduces

processing time. These achievements are the result of the

design of fthe RevoScaleR platform, constructed from the

ground up for speed and scalability.

REFERENCES

[1] Ben-Haim, Y., & Tom-Tov, E. (2010). A streaming parallel decision tree

algorithm. Journal of Machine Learning Research, 849-872.

[2] Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification
and Regression Trees. Pacific Grove: Wadsworth.

[3] Frank, A., & Asuncion, A. (2010). (University of California, Irvine,

School of Information and Computer Science) Retrieved August 2012,

from UCI Machine Learning Repository: http://archive.ics.uci.edu/ml

[4] Kohavi, R. (1996). Scaling Up the Accuracy of Naive-Bayes Classifiers:
a Decision-Tree Hybrid. Proceedings of the Second International

Conference on Knowledge Discovery and Data Mining.
[5] Therneau, T.,& Atkinson, E. (1997). An Introduction to Recursive

Partitioning Using the RPART Routines. Rochester, MN: Mayo Clinic

Authors

A Yugandhar Reddy Post graduate student in the stream of Computer Science

in Depart of Computer Science and Engineering. Obtained his bachelor degree
in Information Technology From JNT University Anantapur.

Dr. A Sureshbabu Presently working as Additional control of examinations

in JNT University Anantapur. Obtained his PhD from JNT University
Anantapur. He published several papers in national and international journal.

His research interests are Data Mining, Big Data Analytics, Cloud Computing.

http://archive.ics.uci.edu/ml

