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Abstract – R is becoming the leading language in data science. 

Because of thousands of packages to handle data science in an easy 

programmable manner. When it comes to the larger data sets its 

showing poor performance in high end servers also. This is only 

because of its style of handling the data. In R entire data need to 

hold in the memory for processing. Due to this memory bound of 

R, original R is not suitable to handle larger data sets. This paper 

addresses how the problem of R can overcome with RevoScaleR. 

Index Terms – Big Data, RevoScaleR, Analytics. 

1. INTRODUCTION 

R is hot, R is rapidly becoming the leading language in 

statistics and data science. Today, R is the tool of choice for 

data science professionals in every industry and field. R 

applications span the universe from the hard sciences such as 

astronomy, chemistry and computational statistics and 

genomics to practical applications in business, medicine drug 

development, marketing, finance, health care, and all manner 

of forecast analytics. Because R has thousands of packages 

many of which are devoted to particular applications. 

Mastering of R is not need to develop your own applications. 

Memory-bound of the R is the main barrier to it .All data need 

to be held in the memory to perform calculations. This 

constraint becomes a problem when data is very large. Even for 

modern computers with high configuration (like, 64-bit address 

spaces and huge amounts of RAM) dealing with data sets that 

are hundreds of millions of observation is a significant 

challenge. The problem is not just simply being capable to 

house the data in memory for examination but performance and 

scalability are prime considerations 

Revolution Analytics has addressed these challenges with its 

Big Data to extend the reach of R into the kingdom of 

production data analysis with very large data sets. This paper 

address the Revolution Analytics new package named 

RevoScaleR TM, which delivers extraordinary levels of 

performance and capacity for statistical analysis in the R 

environment. Now without deploying specialized or expensive 

R users can model and visualize larger data sets. 

2. LIMITATIONS OF IN-MEMORY DATA ANALYSIS 

In the world of fatly increasing size of data, organizations are 

discreet to deploy R beyond research due to this memory bound 

limit. This drawback of R does not only impacts the ability of 

data that can be processed, but also badly affects the 

performance and scalability. For instance, allotting a data 

frame as small as 5,000,000 observations and 3 variables will 

throw an error like the following due to memory limitations. 

Even though high-end servers can manage to held big data in 

memory, the performance of original R on such big data files 

will be expensively slow 

>lm(ArrDelayUniqueCarrier+DayOfWeek, data=myData) 

Error: cannot allocate vector of size 751.8 Mb 

To overcome this limitation, efforts have been made in 

improving R to scale for Big data. The best way to achieve it is 

by implementing parallel external memory storage and parallel 

processing mechanisms in R. 

3. HOW REVOSCALER PROCESS DATA 

3.1 Storing Data 

One of the answers to being scalable is the capacity to handle 

additional data than can fit into memory at same time. This 

equates to being capable to work with chunks of data as an 

alternative of requiring the whole dataset to be housed in 

memory at same time. In the case of RevoScaleR, chunks are 

defined as consecutive blocks of observations for a given 

projection of variables. 

Though RevoScaleR can process data from various sources, it 

has its specific fully optimized file structure (theXDF format) 

that is particularly right for chunking. Data in an XDF file can 

be read rapidly by observations or by variables. In addition, 

blocks of observations for selected variables can be read 

consecutively, instead of randomly. Consecutive accesses can 

be tens to thousands of times faster than random access. Also, 

in an XDF file the time it takes to access a block of observations 

for a variable is fundamentally independent of the total number 

of variables and observations in the file. This means even in the 

very files, only the data for the actual variables required for an 

analysis needs to be accessed and processed, and this may only 

be a few hundreds to few thousands megabytes. The time it 

takes to do that is basically the same as if only that data were 

stored in the file; storing the additional idle data does not add 

to the processing time. 

Data in an XDF file is held in the same binary format that is 

employed in memory, so no conversion is needed when it is 
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brought into memory. In order to reduce wasted space, it can 

also be held in a suitable -sized way. For example, a variable 

that have no more than 256 values can be stored in a byte per 

number. Floating point values with a precision of less than 6 or 

7 decimal digits can be stored in 4 bytes per number. 

New columns and new observations can be added to the file 

without rewriting the whole file. Thus, the cost of creating new 

variables and of adding more rows is greatly reduced. 

3.2 Reading Data 

When data is accessed in chunks, the feasible chunk size 

depends on the variety of reasons, such as the speed of RAM, 

the speed of the disk, speed of cores, the number of cores, and 

the variety of calculations being done. RevoScaleR permits the 

size of chunks to change depending upon circumstances. A 

bottleneck for data handling is data I/O: accessing the data from 

disk (external). RevoScaleR devotes one core to accessing the 

data from disk. Meanwhile, the other cores are allocated to 

processing the chunk of data read into memory from the last 

access. If it is possible to hold all data into memory on once, 

RevoScaleR permits that. It then assigns all available cores to 

handle that data. 

3.3 Handling Data in Memory 

As on disk, usage of the appropriate-sized data type in memory 

reduces the space needed and also the time taken to move the 

data in memory. In other technologies, before adding a set of 

integers and a set of double floating point numbers together, 

the set of integers is first converted and copied into a set of 

doubles. This it is time and space consuming. In RevoScaleR 

avoid such conversions and coping of the data values regardless 

of the type of the operation and size of the data until the data 

values are really given to CPU. 

3.4 Use of Multiple Cores on a Single Computer 

Virtually all computations that encompass data in RevoScaleR 

are spontaneously threaded that they use several cores on an 

engine when they are available. This is done efficiently by 

minimalizing the overhead of shifting the computations to 

multiple threads, by minimizing the quantity of data that must 

be copied, by doing as much work as possible on each thread 

to remunerate the cost of initializing the computations, and by 

minimizing inter-thread synchronization and communication. 

Loading huge chunks of data to each of the multiple cores is 

vital for efficiency. For analytic routines such as crosstabs, 

logistic regression, descriptive statistics, K-means clustering 

and linear regression (in which large number of variables are 

naturally used) a huge chunk of observations perhaps billions 

for all of the variables is read into memory by one core. 

Concurrently, the data chunk from the previous read is virtually 

split among the left behind cores for the required processing. 

The code doing the processing on each core (thread) only 

desires to know what its allocated task is, and no inter-thread 

synchronization and communication is required. 

4. EFFICIENT PARALLELIZATION OF STATISTICAL 

AND BIG DATA PREDICTIVE ANALYTICS 

RevoScaleR is built upon a platform designed to efficiently and 

automatically external memory algorithms. These are the class 

of algorithms that do not need all data to be in memory at same 

time, and such algorithms are existing for a wide range of data 

mining and statistical routines. The way in which these 

algorithms are automatically parallelized is such that, in 

general, the quickest algorithms per core are also the quickest 

when parallelized. (This happy situation is not the case for 

some other class of parallel algorithms). Since the load of 

worrying about parallelization is detached from the engineers 

applying these algorithms, they can concentrating on getting 

feasible speed on each core. This encompasses several things. 

Most obviously, it involves using fast algorithms, and carefully 

coding those using C++ templates, which can produce very fast 

code. Other issues are important as well. Categorical data is 

very common in statistical computations, and they are dialed in 

ways that save memory, upturn speed, and increase 

computational exactness as well. It is often the case in 

statistical models that the same values are required in different 

parts of the computation. RevoScaleR has a erudite algorithm 

for pre-analyzing models to detect such repetition, so that the 

number of computations can be diminished. Multiple models 

can be analyzed jointly. This algorithm can also detect 

collinearities in models, which can lead to wasted 

computations or even computational failures, and can remove 

them prior to doing any computations. 

5. USING REVOSCALER FOR BIG DATA 

PREDICTION ANALYTICS 

This section focuses on applying RevoScaleR package to big 

data prediction analysis. This show how to read a data set in the 

text format, how to convert text file to .xdf format, how to 

construct big data decision tree, how to prune the decision tree, 

how to predict the future and finally how to plot the graph. 

5.1 Importing the dataset 

Here is a sample RevoScaleR analysis that uses a subset of the 

airline on-time data reported each month to the U.S. 

Department of Transportation (DOT) and Bureau of 

Transportation Statistics (BTS) by the 16 U.S. air carriers. This 

data comprises three columns: one categorical variable, 

DayOfWeek and two numeric variables, ArrDelay and 

CRSDepTime. It is positioned in the SampleData directory of 

the RevoScaleR package, so you can easily exucute this 

example in your Revolution R Enterprise session 

Import the example airline data from a csv to an .xdf file. When 

we load the data, we transform the string variable to a 

(categorical) factor variable by stringsAsFactors: 
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inFile<-file.path(rxGetOption("sampleDataDir"), 

"AirlineDemoSmall.csv") rxTextToXdf(inFile = inFile, 

outFile = "airline.xdf", stringsAsFactors = T, rowsPerRead = 

200000) 

There are a total of 600,000 observation in the dataset file. 

Specifying the argument rowsPerRead lets us to read and write 

the data in 3 blocks of 200,000 observations each. 

View elementary data information. The rxGetInfoXdf function 

lets you to quickly view some elementary information 

regarding variables data set and the data set. 

rxGetInfoXdf("airline.xdf", getVarInfo = TRUE, numRows = 

20) 

Function rxHistogram is used to show the distribution of flight 

delay by the day of week. 

5.2 Exploring the data 

Use the rxHistogram function to show the distribution of flight 

delay by the day of week. 

 rxHistogram( ArrDelay|DayOfWeek, data = "airline.xdf")  

Next, we calculate summary statistics to the arrival delay 

variable 

 rxSummary( ArrDelay, data = "airline.xdf") 

5.3 rxDTree for prediction 

Decision trees are effective algorithms widely used for 

regression and classification. Classical algorithms for 

constructing a decision tree sort all continuous variables to 

decide where to divide the data. This sorting step becomes 

memory and time prohibitive when handling with large data. 

Numerous techniques have been projected to overcome the 

sorting problem, which can be roughly classified into two 

classes: using approximate summary statistics or performing 

data pre-sorting of the data. While pre-sorting procedures 

follow classical decision tree algorithms more closely, they 

cannot house very huge data sets. These big data decision trees 

are generally parallelized in numerous ways to allow large 

scale learning: data parallelism splits the data either vertically 

or horizontally so that different processors see different 

variables or rows and task parallelism builds diverse tree nodes 

on diverse processors. 

The rxDTree algorithm is an estimated decision tree algorithm 

with horizontal data parallelism specially designed for 

handling very large data sets. It calculates histograms to create 

empirical distribution functions of the data and constructs the 

decision tree in a breadth-first fashion. The algorithm can be 

run in parallel environments such as a distributed (grid or 

cluster) environment or a multicore machine. Each core gets 

only a part of the observations of the data, but has a view of the 

whole tree built so far. It constructs a histogram from the 

observations it sees, which basically compresses the data to a 

static amount of memory. This estimated description of the data 

is then sent to a master with constant little communication 

complexity autonomous of the length of the data set. The 

master integrates the information received from each of the 

workers and spots which terminal tree nodes to split and how. 

Since the histogram is built in parallel, it can be rapidly 

constructed even for very large data sets. 

With rxDTree , you can regulator the balance between 

prediction accuracy and time complexity by setting the 

maximum amount of bins for the histogram. The algorithm 

constructs the histogram with roughly equal number of rows in 

each bin and takes the limits of the bins as the candidate splits 

for the terminal tree nodes. Since only a limited number of split 

sites are inspected, it is probable that a suboptimal split point is 

chosen causing the entire tree to be different from the one 

constructed by a classical algorithm. However, it has been 

exposed analytically that the error rate of the parallel tree 

reaches the error rate of the serial tree, even if the trees are not 

identical .You can set the number of bins in the histograms to 

regulate the balance between speed and accuracy: a huge 

number of bins allows a more precise description of the data 

and thus more precise results, whereas a little number of bins 

diminishes time complexity and memory usage. In the case of 

integer forecasters for which the count of bins equals or 

exceeds the number of unique observations, the rxDTree 

algorithm produces the identical results as classical sorting 

algorithms since the empirical distribution function precisely 

represents the data set. To forecast the class label of the query 

pattern we build a classifier called decision tree for training and 

testing the classifier we need training set and testing set. 

Genarally 70% observations of dataset are used to train the 

classifier remaining records are used for testing. Following 

code used to load and split the dataset in to training and test 

sets.  

inDataFile <- file.path("AirlineDemoSmall.csv") 

rxImport(inDataFile,outFile="airline", overwrite = TRUE) 

inDataFile <- file.path("airline.xdf") 

split data set 

rxSplit(inData = inDataFile, outFilesBase = paste0("airline"), 

outFileSuffixes = c("Train", "Test"), splitByFactor = "s", 

overwrite = TRUE, transforms = list(splitVar = 

factor(sample(c("Train", "Test"), size = .rxNumRows, replace 

= TRUE, prob = c(.80, .20)), levels = c("Train", "Test"))), 

rngSeed = 17, consoleOutput = TRUE) 

training and testing data sets 

training <- file.path("airline.s.Train.xdf") testing <- 

file.path("airline.s.Test.xdf") 

For the given data set Late is a dependent variable.Setting the 

complexity parameter (cp) to it’s default value results in the 

very large number of splits. Specifying cp = 1e-5 produces a 
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more manageable set of splits in this model.Following code 

builds the factors for the tree 

rxFactors(inData=training,factorInfo = 

list(defaultFctor=list(varName="default")), 

outFile=training,overwrite = TRUE) 

rxFactors(inData=testing,factorInfo = 

list(defaultFctor=list(varName="default")), 

outFile=testing,overwrite = TRUE) 

Following code sets the parameters for the decision tree 

control <- list(minsplit=20,cp=0.01,xval=2, maxdepth=5, 

maxcompete=0,maxsurrogate=0, usesurrogate=2 

,surrogatestye=0) treeC <- rxDTree(formula = Late 

CRSDepTime + DayOfWeek 

,data=training,control=control,maxNumBins = 15000) 

Prediction and confusion matrix 

rxPredict(treeC,data=testing,outData = testing, overwrite = 

TRUE,predVarNames = "Pred_C",type="vector") conf.mat <-

rxCrossTabs( defaultFctor:Pred_CF, data=testing) 

print(conf.mat) print(prop.table(conf.mat$counts[[1]])) 

6. CONCLUSION 

RevoScaleR is a library included in Revolution R Enterprise 

that provides enormously fast statistical analysis on very very 

large data sets, without needing specialized hardware. Using 

only a commodity multi-processor computer with modest 

amounts of RAM, data processing and predictive modeling 

techniques can easily be performed on data sets with hundreds 

of millions of rows and hundreds of variables, at speeds 

suitable for interactive processing. Extending the system to a 

small cluster of similar computers commensurately reduces 

processing time. These achievements are the result of the 

design of fthe RevoScaleR platform, constructed from the 

ground up for speed and scalability. 
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